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This paper discusses a computationally efficient algorithm for estimating the safe ma-

neuvering envelope of damaged aircraft. The algorithm performs a robust reachability

analysis through an optimal control formulation while making use of time scale separation

and taking into account uncertainties in the aerodynamic derivatives. This approach differs

from others since it is physically inspired. This more transparent approach allows inter-

preting data in each step, and it is assumed that these physical models based upon flight

dynamics theory will therefore facilitate certification for future real life applications.

Nomenclature

α angle of attack [◦]
β angle of sideslip [◦]
γ flight path angle [◦]
∆ uncertainty [-]
∆ uncertainty vector [-]
ρ air density [kg/m3]
φ state trajectory
ϕ bank angle [◦]
χ course [◦]
C• aerodynamic derivative [-]
D drag [N]
f nonlinear continuous function
FA•

aerodynamic forces in the aerodynamics frame of reference [N]
g gravitational acceleration [m/s2]
I Invariant set
K set of states
L lift [N]
L set of states
l implicit function
m mass [kg]
p costate vector
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p1,p2 costates
q̄ dynamic pressure [kg/ms2]
R Reachability set
S wing surface area [m2]
ŝ••

standard deviation [-]
T thrust [N]
T time horizon [s]
t time [s]
U the set of Lebesgue and bounded measurable input functions
u input vector
V Viability set
V airspeed [m/s]
V1 value function for viability
V2 value function for invariance
W weight [N]
x1;x2 state
x state vector
x0 initial condition for state vector
Yaero aerodynamic sideforce [N]

I. Introduction

S
afety is of paramount importance in all transportation systems, but especially in civil aviation. There-
fore, in civil aviation, many developments focus on improving safety levels and reducing the risks that

critical failures occur. In a recent study by CAST/ICAO, it can be observed that loss of control in flight
(LOC-I) is the most frequent primary accident cause. This study is based on a statistical analysis of air-
craft accidents between 2002 and 2011, and indicates that this category accounts for as much as 23% of all
fatal aircraft accidents and involves most fatalities.1 Benefit can be gained by developing technology which
prevents these LOC-I accidents. From a flight dynamics point of view, with the technology and computing
power available on this moment, it might have been possible to recover some of the aircraft in the accident
category described above on the condition that non-conventional control strategies would have been ap-
plied. These non-conventional control strategies involve the so-called concept of fault tolerant flight control
(FTFC), where the control system is capable to detect and adapt for changes in the aircraft behavior.

One FTFC strategy option is using a model based control routine. Previous research focused on a physical
model approach.2 In this setup, experiments have shown that not only a reconfiguring controller is needed,
but also some form of flight envelope protection, which prevents the airplane from leaving the safe flight
envelope and loosing control in flight.2 The main challenge in this context is determining the new bounds
of the safe flight envelope after failure, which are then used by the envelope protection algorithm.3

Alternative and complementary research approaches for the purpose of loss of control prevention and
prediction are among others passive adaptive control,4 data-based predictive control5 and real-time optimal
envelope limit estimation.6

Determination of the flight envelope has been done in the literature through various methods. The most
straightforward methods include wind tunnel testing, flight test experiments and high-fidelity model-based
computation of attainable equilibrium sets or achievable trim points,7,8, 9, 10 possibly with bifurcation anal-
ysis11,12 or a vortex lattice algorithm combined with an extended Kalman filter.13 More complex methods
include formulating flight envelope estimation as a reachability problem and solving this with level set meth-
ods and Hamilton-Jacobi equations,14,15,16,17,18 possibly with time scale separation19 or semi-Lagrangian
level sets.20 Alternative methods rely on linearization and region of attraction analysis,21 determining con-
trollability/maneuverability limits in a quaternion-based control architecture22 or robustness analysis for
determination of reliable flight regimes.23 An approach suggested by Boeing uses Control-Centric Modeling,
dynamic flexible structure and load models.24 In the frequency domain, stability margins can be estimated
in real time via nonparametric system identification.25 A complete different alternative is relying on the
bio-immune system metaphor in combination with artificial intelligence.26,27,28 More focused techniques
inspired by flight dynamics exist as well, such as determining the minimum lateral control speed.29 Online
methods are preferable from an operational point of view. For fault tolerant systems, the adaptive flight
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envelope estimation must take into account damage information which will possibly restrict the safe envelope
significantly.

From the perspective of the physical approach, the preferred interpretation of the safe maneuvering enve-
lope considers reachability from the trim envelope. The stable and controllable trim envelope is considered
an a-priori safe set. The backwards reachable set is defined as the set of states from where (at least one point
in) the trim envelope can be reached. The forwards reachable set is defined as the set of states which can
be reached from (at least one point in) the trim envelope. Then the safe maneuvering flight envelope is the
cross section between the forwards and backwards reachable sets. This interpretation is illustrated in Fig. 1.
In addition to the safe envelope, the backwards reachable set is considered as the survivable flight envelope.
After an upset due to damage, turbulence, a wake encounter etc., it is possible to bring the aircraft back to
a safe trim condition as long as the current flight condition is situated inside the backwards reachable set.

Figure 1. Safe maneuvering envelope as intersection between forwards and backwards reachability, source:
van Oort20

The aim is to perform a combined forward and backward reachability analysis from the trim envelope as
efficiently as possible, for on-line implementations. Based upon previous research,6 level set methods are an
excellent candidate. Two of the major challenges are the computational load and how to cope with nonlinear
systems with higher dimensions. In general, an increase in technology readiness level (TRL) is envisaged.

Nonlinear systems with higher dimensions can be simplified by considering the principle of time scale
separation.19 The structure of time scale separation is analogous as applied for the fault tolerant control
algorithm developed earlier.2 The overview can be found in Fig. 2, which illustrates that a nine dimensional
nonlinear problem is decoupled in three consecutive three dimensional optimization problems.

Figure 2. Separation of dynamics over high bandwidth, middle range and low bandwidth
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II. Optimal Control Formulation

It has been shown in the literature that maneuvering envelope estimation through reachability can be
reformulated in the optimal control framework.14 Consider a continuous time control system:

ẋ = f (x,u) (1)

with x ∈ R
n, u ∈ U ⊆ R

m, f (·, ·) : Rn × U → R
n, a function:

l (·) : Rn → R (2)

and an arbitrary time horizon T ≥ 0. Let U [t,t′] denote the set of Lebesgue and bounded measurable
functions from the interval [t, t′] to U . Define φ (τ, t,x,u (·)) as the state trajectory. Given a set of states
K ⊆ R

n, a number of questions can be naturally formulated regarding the relation between the set K and
the state trajectories φ of Eq. (1) over the horizon T . Problems of interest include the following:

Viability: Does there exist a u ∈ U [0,T ] for which the trajectory φ of the state x satisfies x ∈ K for all
t ∈ [0, T ]?

Invariance: Do the trajectories φ of the state x for all u ∈ U [0,T ] satisfy x ∈ K for all t ∈ [0, T ]?

Reachability: Does there exist a u ∈ U [0,T ] and a t ∈ [0, T ] such that the trajectory φ of the state x

satisfies x ∈ K?

More generally, the following sets can be characterized:

V (t,K) =
{
x ∈ R

n| ∃u ∈ U[t,T ], ∀τ ∈ [t, T ] ,φ (τ, t,x,u (·)) ∈ K
}

I (t,K) =
{
x ∈ R

n| ∀u ∈ U[t,T ], ∀τ ∈ [t, T ] ,φ (τ, t,x,u (·)) ∈ K
}

R (t,K) =
{
x ∈ R

n| ∃u ∈ U[t,T ], ∃τ ∈ [t, T ] ,φ (τ, t,x,u (·)) ∈ K
}

By comparing the sets, it can be stated that:

I (t,K) ⊂ V (t,K) ⊂ R (t,K) (3)

The principle of duality results in the relationship, as illustrated in Fig. 3:

R (t,K) = (I (t,Kc))
c

(4)

Figure 3. Illustration of the principle of duality. Left R (t,K), right I (t,Kc).

The above set characterizations can be rewritten as optimization problems. First a connection is estab-
lished between viability and the SUPMIN optimal control problem. Assume that the set K is related to the
zero level set of a continuous function l : Rn → R by K = {x ∈ R

n| l (x) > 0}. Then, it can be stated that:

V (t,K) =

{

x ∈ R
n|V1 (x, t) = sup

u(·)∈U[t,T ]

min
τ∈[t,T ]

l (φ (τ, t,x,u (·))) > 0

}

(5)
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The connection between invariance and the INFMIN optimal control problem can be established by
considering a closed set L, that can be written as the level set of a continuous function l : Rn → R, i.e.
L = {x ∈ Rn| l (x) ≥ 0}. Then, it can be stated that:

I (t, L) =

{

x ∈ R
n|V2 (x, t) = inf

u(·)∈U[t,T ]

min
τ∈[t,T ]

l (φ (τ, t,x,u (·))) > 0

}

(6)

These optimization problems have been transformed in Hamilton-Jacobi-Bellman Partial Differential
Equations (HJB PDE).14 Viability can be written as follows:

∂V1

∂t
(x, t) + min

τ∈[t,T ]

{

sup
u(·)∈U[t,T ]

∂V1

∂x
(x, t) f (x,u)

}

= 0 (7)

Furthermore, for backward integration V1 (x, T ) = l (x) holds. Forward integration implies V1 (x, t) = l (x).
Simlarly, invariance is represented by the following HJB PDE:

∂V2

∂t
(x, t) + min

τ∈[t,T ]

{

inf
u(·)∈U[t,T ]

∂V2

∂x
(x, t) f (x,u)

}

= 0 (8)

In addition, V2 (x, T ) = l (x) holds for backward integration, while V2 (x, t) = l (x) applies in case of
forward integration. These HJB PDE’s can be solved by level sets, for which a toolbox is available in
Matlab R©.15

III. Approach

The approach to calculate the safe maneuvering envelope is based on the following steps:

• Define reference boundaries for V , γ and ϕ as well as grid step size ∆V , ∆γ and ∆ϕ

• Define an implicit function accordingly over V and γ. This needs to be done for every value of ϕ in
case speed and flight path angle are bank angle dependent, i.e. V = V (ϕ) and γ = γ(ϕ).

• The Level sets method toolbox15 relies on the Hamiltonians in Eq. (7) and (8) as a gradient to evolve
the implicit function and thus reference boundaries over time

• The cost functions V1 and V2 become three dimensional functions, where cross sections reflect the
situation for a specific time instant ta.

• A dissipation function is needed to guarantee numerical stability during these calculations. As a
consequence, slightly conservative results are obtained for the boundaries, but analysis has shown that
this dissipation has a minor effect on the results. In this specific context, the chosen dissipation function
is a Lax Friedrichs dissipation function.15

IV. Application example

To illustrate how the envelope estimating algorithm works, a nonlinear 3D aircraft example is considered.
At this point, only the slow dynamics as specified in Fig. 2 are considered. Future work will extend to the
faster dynamics. The data used in this example are based on the RCAM (Research Civil Aircraft Model)
simulation model.30 The acting forces on the aircraft are illustrated in Fig. 4 for a symmetric flight condition.

For the complete 3D situation, the equations of motion are written as follows:2

FAX
−W sin γ = mV̇ (9)

FAZ
cosϕ+ FAY

sinϕ+W cos γ = −mV γ̇ (10)

−FAZ
sinϕ+ FAY

cosϕ = mV χ̇ cos γ (11)

Where the aerodynamic forces can be simplified assuming small aerodynamic angles α and β:

FAX
= T cosβ cosα−D (V, α) ≈ T −D (V, α) (12)

FAZ
= −T sinα− L (V, α) ≈ −L (V, α) (13)

FAY
= −T sinβ cosα+ Yaero (V, β) ≈ Yaero (V, β) (14)
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Figure 4. Acting forces on the aircraft model, source: Lygeros14

with the following expansions for lift L, drag D and sideforce Yaero:

D (V, α) = q̄S
(
CD0

+ CDα
α+ CD

α2α
2
)

(15)

L (V, α) = q̄S (CL0
+ CLα

α) (16)

Yaero (V, β) = q̄S
(
CYβ

β
)

(17)

where the dynamic pressure q̄ = 1/2ρV 2.
The corresponding numerical values are: m = 120 · 103kg, g = 9.81m/s2, W = mg, ρ = 1.225kg/m3 (sea

level), S = 260m2, CL0
= 1.0656, CLα

= 6.0723, CD0
= 0.1599, CDα

= 0.5035, CD
α2 = 2.1175, CYβ

= −1.6.
In the perspective of reachability from stable and controllable trim conditions, the primary states of

interest are airspeed V and flight path angle γ. Considering time scale separation as presented in Fig. 2, the
virtual inputs for the slow dynamics are roll angle ϕ, angle of attack α, sideslip angle β and thrust T . This
framework and combining Eqs. (9)–(17) allows to define the general dynamics f in Eq. (1) by the following
differential equation:

[

V̇

γ̇

]

=

[

− ρS
2mV 2CD0

− g sin γ

− g
V cos γ

]

+

[

cosα cosβ

(cosϕ sinα cosβ − sinϕ sinβ) 1
V

]

T

m
+

+

[

− ρS
2mV 2

(
CDα

α+ CD
α2α

2
)

ρS
2mV (CL0

+ CLα
α) cosϕ

]

+

[

0

− ρS
2mV CYβ

β sinϕ

]

(18)

Assuming small aerodynamic angles, as earlier, simplifies the differential equation:

[

V̇

γ̇

]

=

[

− ρS
2mV 2CD0

− g sin γ

− g
V cos γ

]

+

[
1
m

0

]

T +

[

− ρS
2mV 2

(
CDα

α+ CD
α2α

2
)

ρS
2mV (CL0

+ CLα
α) cosϕ

]

+

[

0

− ρS
2mV CYβ

β sinϕ

]

(19)

This results in a Hamiltonian function with decoupled virtual inputs T , α and β. Roll angle ϕ is
not decoupled, but will be treated as a discretely gridded input. This decoupling significantly promotes
computational efficiency, which is crucial for on-line applications. The Hamiltonian function becomes:

H (p,x,u) =
p1
m

T − p1
ρS

2m
V 2CD

α2α
2 +

ρS

2m
V (p2CLα

cosϕ− p1V CDα
)α− p2

ρS

2m
V CYβ

sinϕβ (20)

where p are the co-states of the value function: p1 = ∂V1

∂V and p2 = ∂V1

∂γ . This Hamiltonian is linear in thrust
T and sideslip angle β and quadratic in angle of attack α. This structure allows for an efficient optimization
routine over the inputs. The allowed ranges of the virtual inputs are: Tmin = 20546N , Tmax = 410920N ,
αmin = 0◦, αmax = 14.5◦ (no stall), φmin /max = ±60◦, βmin /max = ±5◦. The maximizers T̂ , α̂ and β̂ depend
on the sign of the costates p1 and p2. Recall that V > 0, CDα

> 0, CD
α2 > 0, CLα

> 0, CYβ
< 0. Due to the

underlying physics, no sign changes for these parameters are to be expected in case of structural changes.
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Define p̂ =
p2CLα cosϕ−p1V CDα

2p1V CD
α2

and ᾱ = αmin+αmax

2 . Then the optimizing control inputs can be defined,

according to the purpose.
For invariance, the infmin optimization is achieved
by means of the following inputs:

• If p1 > 0 then T̂ = Tmin and

if p̂ > ᾱ then α̂ = αmin

if p̂ = ᾱ then α̂ = αmin or αmax

if p̂ < ᾱ then α̂ = αmax

• If p1 = 0 then T̂ ∈ [Tmin;Tmax] and

if p2 > 0 then α̂ = αmin

if p2 = 0 then α̂ ∈ [αmin;αmax]

if p2 < 0 then α̂ = αmax

• If p1 < 0 then T̂ = Tmax and

if p̂ ≤ αmin then α̂ = αmin

if αmin ≤ p̂ ≤ αmax then α̂ = p̂

if p̂ ≥ αmax then α̂ = αmax

Besides, for the sideslip angle β holds:

• if p2 sinϕ > 0 then β̂ = βmin

• if p2 sinϕ = 0 then β̂ ∈ [βmin;βmax]

• if p2 sinϕ < 0 then β̂ = βmax

Alternative inputs are defined for the supmin opti-
mization related to viability:

• If p1 < 0 then T̂ = Tmax and

if p̂ > ᾱ then α̂ = αmin

if p̂ = ᾱ then α̂ = αmin or αmax

if p̂ < ᾱ then α̂ = αmax

• If p1 = 0 then T̂ ∈ [Tmin;Tmax] and

if p2 < 0 then α̂ = αmin

if p2 = 0 then α̂ ∈ [αmin;αmax]

if p2 > 0 then α̂ = αmax

• If p1 > 0 then T̂ = Tmin and

if p̂ ≤ αmin then α̂ = αmin

if αmin ≤ p̂ ≤ αmax then α̂ = p̂

if p̂ ≥ αmax then α̂ = αmax

Besides, for the sideslip angle β holds:

• if p2 sinϕ < 0 then β̂ = βmin

• if p2 sinϕ = 0 then β̂ ∈ [βmin;βmax]

• if p2 sinϕ > 0 then β̂ = βmax

For the purpose of reachability analysis, the principle of duality can be applied for the infmin optimization
inputs, as highlighted in Eq. (4).

V. Results

The first set of results focuses on motion in the plane of symmetry, assuming bank angle ϕ = 0. Thereafter,
motion leaving the plane of symmetry will be considered.

Fig. 5 illustrates the definition of invariance, viability and reachability in the context of the RCAM
example. All these properties are considered in the backward sense, meaning timesteps are taken backward
in time. As a reference, the safe trim envelope K is defined as the area between the boundaries Vmin =
60m/s, Vmax = 100m/s, γmin = −10◦ and γmax = +10◦ and is described by the implicit function : l (x) =
min {x1 − Vmin, Vmax − x1, x2 − γmin, γmax − x2} such that l (x) ≥ 0 for x ∈ K and l (x) < 0 for x /∈ K. In
Fig. 5(a), the green area shows the invariant set I (T = 2s,K) as defined in Sec. II. Monte Carlo analyses
confirm the accuracy of the result. For initial conditions x0 inside the invariant set I (T = 2s,K), the
whole state trajectory φ (τ, t,x,u) till the end point at T = 2s will remain inside the reference envelope K,
independent from which inputs u (·) are applied to the aircraft. For initial conditions x0 outside the invariant
set I (T = 2s,K), there exists at least one input u (·) which will push part of the state trajectory φ (τ, t,x,u)
towards the end point at T = 2s outside the trim envelope K. This complies with the aforementioned
definition of invariant sets in Section II.

As can be seen in Fig. 5(b), the viability set V (T = 2s,K) is somewhat less restrictive. Monte Carlo
analyses confirm that, for initial conditions x0 inside the viability set V (T = 2s,K), it is always possible to
find at least one admissible input u (·) within saturation bounds which will keep the whole state trajectory
φ (τ, t,x,u) till the end point at T = 2s inside the reference envelope K. On the other hand, outside the
viability set V (T = 2s,K), the state trajectory φ (τ, t,x,u) is guaranteed to leave the reference envelope K
within T = 2s, independent from which input u is applied.

Finally, the concept of backwards reachability R (T = 2s,K) is illustrated in Fig. 5(c). For initial
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conditions x0 within the backwards reachable set R (T = 2s,K), it is always possible to find at least one
admissible input u (·) which will bring part of the state trajectory φ (τ, t,x,u) towards the end point at
T = 2s inside the trim envelope K. On the other hand, from outside the backwards reachability set
R (T = 2s,K), it is impossible for the state trajectory φ (τ, t,x,u) to reach the reference envelope K within
T = 2s, independent from which input u is applied.

Fig. 6 shows the backwards evolution of invariance and viability sets over different discrete time steps
of a total backwards time horizon T = 7s. At t = 7s, both sets are identical to the reference envelope K.
Over the next few seconds, both sets start shrinking. While the invariant set keeps shrinking and eventually
disappears altogether around t = 4.6s, the viability set converges to a steady state situation, which is reached
around t = 3s. The difference between both can be analysed from their definition. For a time horizon long
enough (in this specific case 4.6s), it is always possible to find at least one input within saturation limits
which will push the state trajectory starting at whatever initial condition outside the reference envelope. The
converging viability set towards a steady state shape indicates that there is a critical time instant (in this
specific case 3s) for which at least one input can be found which keeps the state trajectories from the viable
initial conditions within the reference envelope. Prolonging the time horizon won’t shrink this viability set
further. This observation allows to make a time independent statement: the viability set for t = 3s and less
is the set of initial conditions for which at least one admissible input can be found to keep the state trajectory
within the reference envelope, irrespective of the length of the time horizon. Outside this viability set, the
state trajectory is guaranteed to leave the reference envelope eventually at some point, independent from
which input is applied. This is in contrast with the definition of the stable trim envelopea. As a consequence,
it can be stated that under any circumstance the stable trim envelope should be situated inside the viability
set.

The backwards invariance, viability and reachability sets for the RCAM model over a time horizon of
T = 2s are compared in Fig. 7. This set comparison confirms that invariance is a subset of viability, which
in its turn is a subset of reachability, as was already claimed in Eq. (3).

So far, only backwards integration has been considered. Besides, forward integration is important in
the interpretation of the safe maneuvering envelope as elaborated in Section I. The only difference between
both is the direction of the time horizon and the time steps: backwards reachability considers rearward
timesteps, as has been discussed so far in this section, while forwards reachability involves forward time
steps. Fig. 8 compares forward and backward reachability for the RCAM model over a time horizon T = 2s.
Backwards reachability is the lower set and is consistent with previous figures, forwards reachability is the
upper envelope. According to the definition of the safe maneuvering envelope provided in Section I, the cross
section between both in the center is designated as the safe maneuvering envelope. All flight conditions in
this set can be reached from the stable trim envelope, and the stable trim envelope can be reached from this
set as well.

Despite the transparent definition of the safe maneuvering envelope provided previously, this set of flight
conditions is somewhat too restrictive in the context of fault tolerant control and upset recovery. For this
purpose, the backwards reachable set can be defined as the survivable envelope. This envelope corresponds
to the set of flight conditions from which a safe recovery to a stable trim flight condition is still possible
within the specified time horizon T after a disturbing failure, wind gust or other upset. As an illustration of
this concept, the safe and survivable envelopes for the RCAM model over a time horizon T = 2s are given in
Fig. 9 (dark and light green respectively), together with the reference envelope K which is marked by the red
contour. The pilot can safely steer the aircraft arbitrarily as desired inside the dark green safe maneuvering
envelope within 2s. In case of a failure, wind gust or other upset, it is possible to recover towards a safe
equilibrium condition within 2s as long as the initial condition immediately after perturbation is situated
inside the light green survivable envelope. However, given the admissible inputs between saturation limits,
it is impossible for the pilot to steer the plane actively towards the light green area. In the next examples,
focus will be placed on the survivable maneuvering envelope.

Some damage scenarios are considered in Fig. 10, and their influence on the survivable maneuvering

aThe trim envelope is the set of flight conditions for which an equilibrium can be reached, meaning that an admissible input
within saturation limits can be found for these flight conditions which renders all values of the first order time derivative of the
state vector equal to zero. Stability can be defined as static and dynamic stability. An equilibrium point is statically stable
when a deviation from equilibrium, caused by a disturbance, will automatically generate a force or moment in the opposite
direction with respect to the deviation. A dynamically stable trim point is a statically stable equilibrium point where the force
or moment, automatically generated by the disturbance, is large enough to overcome and eliminate the disturbance. In this
paper, a stable trim envelope is de facto the collection of flight conditions in a dynamically stable equilibrium.
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(c) Backwards reachability with Monte Carlo Analysis

Figure 5. Backwards invariance, viability and reachability for RCAM model for time horizon T = 2s, including
Monte Carlo Analysis
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Figure 6. Comparison of backwards invariance and viability for RCAM model over different time instants

Figure 7. Comparison of backwards invariance, viability and reachability for RCAM model for time horizon
T = 2s
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Figure 8. Comparison of forward (upper area) and backward (lower area) reachability for RCAM model for
time horizon T = 2s

Figure 9. Safe (dark green) and survivable (light green) maneuvering envelopes for RCAM model for time
horizon T = 2s.

11 of 20

American Institute of Aeronautics and Astronautics



envelope is investigated. Fig. 10(a) considers a generic damage scenario where the total lift force is reduced
by 20% and the total drag force is increased by 20%. As can be seen in Fig. 10(a), the maneuvering envelope
for the damaged aircraft shifts upward and expands slightly to the right. The physical explanation for this
is the fact that the loss in lift force results in reduced climb capability but improved diving capability. As
a consequence, the reference envelope can be reached from smaller negative, but larger positive flight path
angles γ. Moreover, increased drag leads to a faster deceleration capability, which makes the trim envelope
reachable from slightly larger airspeeds within 2s.

As second damage scenario, an input restriction is defined where engine damage results in a 30% lower
limit of the maximum thrust value. In Fig. 10(b), it can be seen that only the left boundary of the envelope
shrinks somewhat. This corresponds to the reduced acceleration capability due to the lower Tmax. The
reference envelope can only be reached from slightly higher speeds in the lower range between 50m/s and
60m/s, compared with the nominal situation.

Figure 10(c) shows the cumulative effect of both damage scenarios, where both previous changes and
shifts have been combined in the new survivable maneuvering envelope for the RCAM model over a time
horizon of T = 2s.

(a) 20% lift loss and 20% drag increase (b) 30% decrease of Tmax

(c) 20% lift loss and 20% drag increase as well as 30% decrease
of Tmax

Figure 10. Different damage scenarios for RCAM model for time horizon T = 2s

So far, only motion in the plane of symmetry has been considered. By assuming that bank angle ϕ 6= 0,
an additional dimension is added to the maneuvering envelope. The computationally most efficient way to
do this, is defining a discrete set of bank angle values ϕ ∈ [0◦; 60◦], and calculating the V, γ maneuvering
envelope for every value of ϕ individually. Due to symmetrical properties of the aircraft, only positive bank
angles need to be considered. In case of asymmetric damage, the bank angle range needs to be adapted
accordingly. The resulting 3D maneuvering envelope is given in Fig. 11. A more extensive analysis of these
results will be given in section VI, together with the incorporation of some robustness characteristics in the
determination of the survivable maneuvering envelope.
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Figure 11. Result of 2D optimization procedure over different bank angles φ, time horizon T = 2s

VI. Robustness consideration

In the optimal control framework elaborated previously, it is possible to incorporate robustness for un-
certainties in the estimated values for the aerodynamic derivatives. These uncertainties are based on the
standard deviations for the identified aerodynamic parameters:

CL•
= ĈL•

+ ŝL•
·∆L•

with |∆L•
| 6 1, (21)

CD•
= ĈD•

+ ŝD•
·∆D•

with |∆D•
| 6 1, (22)

CY•
= ĈY•

+ ŝY•
·∆Y•

with |∆Y•
| 6 1 (23)

Based upon the required degree of conservatism, the standard deviations ŝ••
can be multiplied by 2 or 3 in

order to increase coverage of the Gaussian distribution of the uncertain parameter (1ŝ••
= 68%, 2ŝ••

= 95%,
3ŝ••

= 99%).
The crux is to include the ∆’s as disturbances in the optimization function, they oppose the optimization

over u. As a consequence, the invariance optimization formulation becomes:19

V2 (x, t) = inf
u(·)∈U[t,T ]

sup
∆(·)∈[−1,1]

min
τ∈[t,T ]

l (φ (τ, t,x,u (·) ,∆ (·))) > 0 (24)

Similarly as previously, reformulation into an HJB PDE yields:

∂V2

∂t
(x, t) + min

τ∈[t,T ]

{

inf
u(·)∈U[t,T ]

sup
∆(·)∈[−1,1]

∂V2

∂x
(x, t) f (x,u,∆)

}

= 0 (25)

where V2 (x, T ) = l (x) holds for backward integration and V2 (x, t) = l (x) applies to forward integration.
For this purpose the Hamiltonian from Eq. (20) can be rewritten, this time including parts independent

of the inputs T , α or β but with some aerodynamic derivative(s):

H (p,x,u) = −p1
ρS

2m
V 2CD0

+ p2
ρS

2m
V CL0

cosϕ− p1
ρS

2m
V 2

(
CDα

α+ CD
α2α

2
)
+ p2V

ρS

2m
CLα

cosϕα+

−p2
ρS

2m
V CYβ

sinϕβ (26)
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It can be observed that the aerodynamic derivatives all appear linearly in an uncoupled way, which allows a
similar procedure to solve the optimization as previously. By rewriting the Hamiltonian as a summation of
terms, where each term is a multiplication of a variable involving a costate, a constant factor and a derivative,
one can determine the sign of this factor, which consists of the predefined physical parameters:

H (p,x,u) = −p1
ρS

2m
V 2

︸ ︷︷ ︸

>0

CD0
+ p2

ρS

2m
V cosϕ

︸ ︷︷ ︸

>0

CL0
− p1

ρS

2m
V 2α2

︸ ︷︷ ︸

>0

CD
α2 + p2

ρS

2m
V α cosϕ

︸ ︷︷ ︸

>0

CLα
+

−p1
ρS

2m
V 2α

︸ ︷︷ ︸

>0

CDα
− p2 sinϕβ

ρS

2m
V

︸ ︷︷ ︸

>0

CYβ
(27)

where it should be noted that ϕ ∈ [−60◦; 60◦] , α ∈ [0◦; 14.5◦], β ∈ [−5◦; 5◦]. Furthermore airspeed V > 0
and for the aerodynamic derivatives, it is known that CDα

> 0, CD
α2 > 0, CLα

> 0, CYβ
< 0. Due to

the underlying physics, no sign changes for these parameters are to be expected in case of uncertainty or
structural changes.

Based upon this formulation, optimal control inputs for the aerodynamic derivatives can be defined as
given in Table 1 where C• = C•max

and C• = C•min
.

Table 1. Optimal control inputs for robustness against uncertain aerodynamic derivatives

sign of costate minimizer maximizer

p1 ≥ 0 ĈD0
= CD0

, ĈDα
= CDα

, ĈD
α2 = CD

α2 ĈD0
= CD0

, ĈDα
= CDα

, ĈD
α2 = CD

α2

p1 < 0 ĈD0
= CD0

, ĈDα
= CDα

, ĈD
α2 = CD

α2
ĈD0

= CD0
, ĈDα

= CDα
, ĈD

α2 = CD
α2

p2 ≥ 0 ĈL0
= CL0

, ĈLα
= CLα

ĈL0
= CL0

, ĈLα
= CLα

p2 < 0 ĈL0
= CL0

, ĈLα
= CLα

ĈL0
= CL0

, ĈLα
= CLα

p2 sinϕ · β ≥ 0 ĈYβ
= CYβ

ĈYβ
= CYβ

p2 sinϕ · β < 0 ĈYβ
= CYβ

ĈYβ
= CYβ

With this information, it is possible to create an entire “uncertainty band” around the envelope, however,
here focus will be placed on the “worst-case” minimal size envelope.

Fig. 12 compares the 3D envelopes with and without uncertainty, where two levels of uncertainty have
been considered here, namely 10% and 20% of uncertainty on all aerodynamic derivatives. For the purpose of
this example, identical ratios of standard deviations over nominal values have been defined for all derivatives,
but the algorithm is capable to deal with individual standard deviations which can vary between the different
aerodynamic derivatives. It can be clearly seen in Fig. 12 that larger degrees of uncertainty result in more
significant shrinking of the envelope, since this is a “worst-case” minimal size envelope.

Fig. 13 analyses the V, γ maneuvering envelope for different values of bank angle ϕ, including robustness
for uncertainties of 10% and 20%. By comparing Fig. 13(a), 13(b) and 13(c), it can be seen that larger bank
angles have an influence on the climb capability of the aircraft. This is due to the physical principle that
climb capability of lift force is provided through L cosϕ, which confirms a smaller decrease for smaller bank
angles (up to ϕ = 25◦ as shown in Fig. 13(b)) but a much more significant change for larger bank angles as
can be seen in Fig. 13(c).

The final scenario to be considered, is the V, γ maneuvering envelope for the RCAM model for different
values of bank angle ϕ, with and without generic damage scenario involving 20% decrease in lift force and
increase in drag force. The results are shown in Fig. 14 and 15. Fig. 14 provides a comparison of the 3D
envelopes without considering robustness.

Fig. 15 includes robustness for 10% uncertainty and analyses the V, γ maneuvering envelope for three
different values of bank angle ϕ, namely 0◦, 25◦ and 60◦. By comparing Fig. 15(a), 15(b) and 15(c), it
can be seen that the damage scenario as well as larger bank angles both have a negative influence on the
climb capability of the aircraft. This is again consistent with the underlying physical principles, as explained
previously. For motion out of the plane of symmetry, climb capability is provided through L cosϕ. In this
example, this capability is reduced by the non-zero bank angle ϕ as well as by the reduced lift vector L,
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Figure 12. Comparison of 3D envelopes with and without uncertainty: nominal (green), 10% uncertainty
(blue), 20% uncertainty (yellow)

(a) ϕ = 0◦ (b) ϕ = 25◦ (c) ϕ = 60◦

Figure 13. V, γ maneuvering envelope of RCAM model for time horizon T = 2s for different bank angles and
different uncertainty levels. Smaller envelope areas correspond to larger uncertainty bounds.
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Figure 14. Comparison of 3D envelopes with and without damage: nominal (blue), 20% change in lift and
drag (green). No uncertainty included.

(a) ϕ = 0◦ (b) ϕ = 25◦ (c) ϕ = 60◦

Figure 15. V, γ maneuvering envelope of RCAM model without and with 20% change in lift and drag for
time horizon T = 2s for different bank angles. 10% uncertainty included. Lower envelope areas correspond to
nominal configuration.
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resulting in an accumulated effect. This example is the combination of the situations in Fig. 10(a) and 13.
In case of a larger bank angle of ϕ = 60◦, the decrease in climb capability due to loss of lift force is less than
for zero bank angle, which is confirmed by comparing Fig. 15(a), 15(b) and 15(c).

Extensive Monte Carlo analyses have been performed in order to verify the accuracy of the boundary
of the estimated survivable maneuvering envelope. These analyses have been based on the non-simplified
aircraft model, ignoring the assumption that the aerodynamic angles α and β should be small. All these
Monte Carlo analyses have confirmed that the results provided here are accurate and that the simplifications
hold for the current ranges of the aerodynamic angles, namely α ∈ [0◦; 14.5◦] (no stall) and β ∈ [−5◦; +5◦].
This is an important conclusion which makes a relevant on-line safe maneuvering envelope estimation tool
much more feasible.

VII. Information required and output provided to other algorithms

The research results presented here contribute to the VSST project (Vehicle Safety Systems Technologies)
and are planned to be integrated in the task package “Maneuverability Estimation & Upset Prevention”,
involving the subtask activities “Dynamic Envelope Estimation & Protection (DEEP)” and “Constrained
Trajectory Generation & Anticipatory Guidance (CTGAG)”.

As a consequence, this maneuvering envelope estimation algorithm is interconnected with other algo-
rithms, namely real time modeling, flight envelope protection, trajectory generation and anticipatory guid-
ance. The first routine provides inputs to the algorithm, while its output is provided to the three latter ones.
Figure 16 illustrates these interconnections in a global overview.

Figure 16. Overview of interconnection with other VSST components

The algorithm for estimating the maneuvering envelope relies on some information which needs to be
available. First, the aerodynamic derivatives and their standard deviations need to be estimated in real
time, such that up to date information is available before and after failure. With this information, a stable
trim envelope needs to be determined first. The values for derivatives and standard deviations, and the
boundaries of the stable trim envelope serve as a-priori information for the algorithm discussed here. The
output of the algorithm is then provided to the trajectory generation and anticipatory guidance algorithms.
A more detailed overview of this can be found in Fig. 17.
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Figure 17. Detailed overview of task package maneuverability estimation and upset prevention
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VIII. Conclusions and future work

In this paper, a computationally efficient algorithm for estimating the safe maneuvering envelope of
damaged aircraft has been discussed. The algorithm performs a robust reachability analysis through an
optimal control formulation while making use of time scale separation and taking into account uncertainties
in the aerodynamic derivatives. The safe maneuvering envelope is defined as the cross section between the
forwards reachable and backwards reachable sets, which have been calculated starting from the stable trim
envelope. Moreover, the backwards reachable set can be considered as the survivable maneuvering envelope,
from where it is possible to bring the aircraft back to a safe trim condition after an upset due to damage,
turbulence, a wake encounter etc. Damage scenario applications are included for two dimensional (in the
plane of symmetry) and three dimensional examples. Results were found to be consistent with the underlying
physical principles. This approach differs from others since it is physically inspired. This more transparent
approach allows interpreting data in each step, and it is assumed that these physical models based upon
flight dynamics theory will therefore facilitate certification for future real life applications.

At this point, only the slow dynamics as specified in Fig. 2 have been considered. Future work will extend
to the faster dynamics in higher bandwidths. It should be noted that only the low bandwidth dynamics have
a full nonlinear input-output description, leading to a more complex scheme to determine the optimizing
control inputs. The faster dynamics for both other ranges can be represented as a linear matrix input-
output relationship, which simplifies the optimization scheme considerably. Moreover, the middle range is
aircraft independent and does not need any robustness measures for uncertainties in aerodynamic derivatives.
Another topic for further research is determining the bandwidth dependent time horizon values for every
sub-part of the dynamics.
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